Paper Reading AI Learner

On Efficient Reinforcement Learning for Full-length Game of StarCraft II

2022-09-23 12:24:21
Ruo-Ze Liu, Zhen-Jia Pang, Zhou-Yu Meng, Wenhai Wang, Yang Yu, Tong Lu

Abstract

StarCraft II (SC2) poses a grand challenge for reinforcement learning (RL), of which the main difficulties include huge state space, varying action space, and a long time horizon. In this work, we investigate a set of RL techniques for the full-length game of StarCraft II. We investigate a hierarchical RL approach involving extracted macro-actions and a hierarchical architecture of neural networks. We investigate a curriculum transfer training procedure and train the agent on a single machine with 4 GPUs and 48 CPU threads. On a 64x64 map and using restrictive units, we achieve a win rate of 99% against the level-1 built-in AI. Through the curriculum transfer learning algorithm and a mixture of combat models, we achieve a 93% win rate against the most difficult non-cheating level built-in AI (level-7). In this extended version of the paper, we improve our architecture to train the agent against the cheating level AIs and achieve the win rate against the level-8, level-9, and level-10 AIs as 96%, 97%, and 94%, respectively. Our codes are at this https URL. To provide a baseline referring the AlphaStar for our work as well as the research and open-source community, we reproduce a scaled-down version of it, mini-AlphaStar (mAS). The latest version of mAS is 1.07, which can be trained on the raw action space which has 564 actions. It is designed to run training on a single common machine, by making the hyper-parameters adjustable. We then compare our work with mAS using the same resources and show that our method is more effective. The codes of mini-AlphaStar are at this https URL. We hope our study could shed some light on the future research of efficient reinforcement learning on SC2 and other large-scale games.

Abstract (translated)

URL

https://arxiv.org/abs/2209.11553

PDF

https://arxiv.org/pdf/2209.11553.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot