Paper Reading AI Learner

Effects of language mismatch in automatic forensic voice comparison using deep learning embeddings

2022-09-26 11:49:37
Dávid Sztahó, Attila Fejes

Abstract

In forensic voice comparison the speaker embedding has become widely popular in the last 10 years. Most of the pretrained speaker embeddings are trained on English corpora, because it is easily accessible. Thus, language dependency can be an important factor in automatic forensic voice comparison, especially when the target language is linguistically very different. There are numerous commercial systems available, but their models are mainly trained on a different language (mostly English) than the target language. In the case of a low-resource language, developing a corpus for forensic purposes containing enough speakers to train deep learning models is costly. This study aims to investigate whether a model pre-trained on English corpus can be used on a target low-resource language (here, Hungarian), different from the model is trained on. Also, often multiple samples are not available from the offender (unknown speaker). Therefore, samples are compared pairwise with and without speaker enrollment for suspect (known) speakers. Two corpora are applied that were developed especially for forensic purposes, and a third that is meant for traditional speaker verification. Two deep learning based speaker embedding vector extraction methods are used: the x-vector and ECAPA-TDNN. Speaker verification was evaluated in the likelihood-ratio framework. A comparison is made between the language combinations (modeling, LR calibration, evaluation). The results were evaluated by minCllr and EER metrics. It was found that the model pre-trained on a different language but on a corpus with a huge amount of speakers performs well on samples with language mismatch. The effect of sample durations and speaking styles were also examined. It was found that the longer the duration of the sample in question the better the performance is. Also, there is no real difference if various speaking styles are applied.

Abstract (translated)

URL

https://arxiv.org/abs/2209.12602

PDF

https://arxiv.org/pdf/2209.12602.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot