Paper Reading AI Learner

Dynamic Surrogate Switching: Sample-Efficient Search for Factorization Machine Configurations in Online Recommendations

2022-09-29 07:29:38
Blaž Škrlj, Adi Schwartz, Jure Ferlež, Davorin Kopič, Naama Ziporin

Abstract

Hyperparameter optimization is the process of identifying the appropriate hyperparameter configuration of a given machine learning model with regard to a given learning task. For smaller data sets, an exhaustive search is possible; However, when the data size and model complexity increase, the number of configuration evaluations becomes the main computational bottleneck. A promising paradigm for tackling this type of problem is surrogate-based optimization. The main idea underlying this paradigm considers an incrementally updated model of the relation between the hyperparameter space and the output (target) space; the data for this model are obtained by evaluating the main learning engine, which is, for example, a factorization machine-based model. By learning to approximate the hyperparameter-target relation, the surrogate (machine learning) model can be used to score large amounts of hyperparameter configurations, exploring parts of the configuration space beyond the reach of direct machine learning engine evaluation. Commonly, a surrogate is selected prior to optimization initialization and remains the same during the search. We investigated whether dynamic switching of surrogates during the optimization itself is a sensible idea of practical relevance for selecting the most appropriate factorization machine-based models for large-scale online recommendation. We conducted benchmarks on data sets containing hundreds of millions of instances against established baselines such as Random Forest- and Gaussian process-based surrogates. The results indicate that surrogate switching can offer good performance while considering fewer learning engine evaluations.

Abstract (translated)

URL

https://arxiv.org/abs/2209.14598

PDF

https://arxiv.org/pdf/2209.14598.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot