Paper Reading AI Learner

Convolutional Neural Networks Quantization with Attention

2022-09-30 08:48:31
Binyi Wu, Bernd Waschneck, Christian Georg Mayr

Abstract

It has been proven that, compared to using 32-bit floating-point numbers in the training phase, Deep Convolutional Neural Networks (DCNNs) can operate with low precision during inference, thereby saving memory space and power consumption. However, quantizing networks is always accompanied by an accuracy decrease. Here, we propose a method, double-stage Squeeze-and-Threshold (double-stage ST). It uses the attention mechanism to quantize networks and achieve state-of-art results. Using our method, the 3-bit model can achieve accuracy that exceeds the accuracy of the full-precision baseline model. The proposed double-stage ST activation quantization is easy to apply: inserting it before the convolution.

Abstract (translated)

URL

https://arxiv.org/abs/2209.15317

PDF

https://arxiv.org/pdf/2209.15317.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot