Paper Reading AI Learner

MSRL: Distributed Reinforcement Learning with Dataflow Fragments

2022-10-03 12:34:58
Huanzhou Zhu, Bo Zhao, Gang Chen, Weifeng Chen, Yijie Chen, Liang Shi, Peter Pietzuch, Lei Chen

Abstract

Reinforcement learning~(RL) trains many agents, which is resource-intensive and must scale to large GPU clusters. Different RL training algorithms offer different opportunities for distributing and parallelising the computation. Yet, current distributed RL systems tie the definition of RL algorithms to their distributed execution: they hard-code particular distribution strategies and only accelerate specific parts of the computation (e.g. policy network updates) on GPU workers. Fundamentally, current systems lack abstractions that decouple RL algorithms from their execution. We describe MindSpore Reinforcement Learning (MSRL), a distributed RL training system that supports distribution policies that govern how RL training computation is parallelised and distributed on cluster resources, without requiring changes to the algorithm implementation. MSRL introduces the new abstraction of a fragmented dataflow graph, which maps Python functions from an RL algorithm's training loop to parallel computational fragments. Fragments are executed on different devices by translating them to low-level dataflow representations, e.g. computational graphs as supported by deep learning engines, CUDA implementations or multi-threaded CPU processes. We show that MSRL subsumes the distribution strategies of existing systems, while scaling RL training to 64 GPUs.

Abstract (translated)

URL

https://arxiv.org/abs/2210.00882

PDF

https://arxiv.org/pdf/2210.00882.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot