Paper Reading AI Learner

Throwing Objects into A Moving Basket While Avoiding Obstacles

2022-10-02 19:50:09
Hamidreza Kasaei, Mohammadreza Kasaei

Abstract

The capabilities of a robot will be increased significantly by exploiting throwing behavior. In particular, throwing will enable robots to rapidly place the object into the target basket, located outside its feasible kinematic space, without traveling to the desired location. In previous approaches, the robot often learned a parameterized throwing kernel through analytical approaches, imitation learning, or hand-coding. There are many situations in which such approaches do not work/generalize well due to various object shapes, heterogeneous mass distribution, and also obstacles that might be presented in the environment. It is obvious that a method is needed to modulate the throwing kernel through its meta parameters. In this paper, we tackle object throwing problem through a deep reinforcement learning approach that enables robots to precisely throw objects into moving baskets while there are obstacles obstructing the path. To the best of our knowledge, we are the first group that addresses throwing objects with obstacle avoidance. Such a throwing skill not only increases the physical reachability of a robot arm but also improves the execution time. In particular, the robot detects the pose of the target object, basket, and obstacle at each time step, predicts the proper grasp configuration for the target object, and then infers appropriate parameters to throw the object into the basket. Due to safety constraints, we develop a simulation environment in Gazebo to train the robot and then use the learned policy in real-robot directly. To assess the performers of the proposed approach, we perform extensive sets of experiments in both simulation and real robots in three scenarios. Experimental results showed that the robot could precisely throw a target object into the basket outside its kinematic range and generalize well to new locations and objects without colliding with obstacles.

Abstract (translated)

URL

https://arxiv.org/abs/2210.00609

PDF

https://arxiv.org/pdf/2210.00609.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot