Paper Reading AI Learner

Fault Diagnosis using eXplainable AI: a Transfer Learning-based Approach for Rotating Machinery exploiting Augmented Synthetic Data

2022-10-06 15:02:35
Lucas Costa Brito, Gian Antonio Susto Jorge Nei Brito, Marcus Antonio Viana Duarte

Abstract

Artificial Intelligence (AI) is one of the approaches that has been proposed to analyze the collected data (e.g., vibration signals) providing a diagnosis of the asset's operating condition. It is known that models trained with labeled data (supervised) achieve excellent results, but two main problems make their application in production processes difficult: (i) impossibility or long time to obtain a sample of all operational conditions (since faults seldom happen) and (ii) high cost of experts to label all acquired data. Another limitating factor for the applicability of AI approaches in this context is the lack of interpretability of the models (black-boxes), which reduces the confidence of the diagnosis and trust/adoption from users. To overcome these problems, a new generic and interpretable approach for classifying faults in rotating machinery based on transfer learning from augmented synthetic data to real rotating machinery is here proposed, namelly FaultD-XAI (Fault Diagnosis using eXplainable AI). To provide scalability using transfer learning, synthetic vibration signals are created mimicking the characteristic behavior of failures in operation. The application of Gradient-weighted Class Activation Mapping (Grad-CAM) with 1D Convolutional Neural Network (1D CNN) allows the interpretation of results, supporting the user in decision making and increasing diagnostic confidence. The proposed approach not only obtained promising diagnostic performance, but was also able to learn characteristics used by experts to identify conditions in a source domain and apply them in another target domain. The experimental results suggest a promising approach on exploiting transfer learning, synthetic data and explainable artificial intelligence for fault diagnosis. Lastly, to guarantee reproducibility and foster research in the field, the developed dataset is made publicly available.

Abstract (translated)

URL

https://arxiv.org/abs/2210.02974

PDF

https://arxiv.org/pdf/2210.02974.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot