Paper Reading AI Learner

Considerations for Task Allocation in Human-Robot Teams

2022-10-06 23:57:23
Arsha Ali, Dawn M. Tilbury, Lionel P. Robert Jr

Abstract

In human-robot teams where agents collaborate together, there needs to be a clear allocation of tasks to agents. Task allocation can aid in achieving the presumed benefits of human-robot teams, such as improved team performance. Many task allocation methods have been proposed that include factors such as agent capability, availability, workload, fatigue, and task and domain-specific parameters. In this paper, selected work on task allocation is reviewed. In addition, some areas for continued and further consideration in task allocation are discussed. These areas include level of collaboration, novel tasks, unknown and dynamic agent capabilities, negotiation and fairness, and ethics. Where applicable, we also mention some of our work on task allocation. Through continued efforts and considerations in task allocation, human-robot teaming can be improved.

Abstract (translated)

URL

https://arxiv.org/abs/2210.03259

PDF

https://arxiv.org/pdf/2210.03259.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot