Paper Reading AI Learner

How to Enable Uncertainty Estimation in Proximal Policy Optimization

2022-10-07 15:56:59
Eugene Bykovets, Yannick Metz, Mennatallah El-Assady, Daniel A. Keim, Joachim M. Buhmann

Abstract

While deep reinforcement learning (RL) agents have showcased strong results across many domains, a major concern is their inherent opaqueness and the safety of such systems in real-world use cases. To overcome these issues, we need agents that can quantify their uncertainty and detect out-of-distribution (OOD) states. Existing uncertainty estimation techniques, like Monte-Carlo Dropout or Deep Ensembles, have not seen widespread adoption in on-policy deep RL. We posit that this is due to two reasons: concepts like uncertainty and OOD states are not well defined compared to supervised learning, especially for on-policy RL methods. Secondly, available implementations and comparative studies for uncertainty estimation methods in RL have been limited. To overcome the first gap, we propose definitions of uncertainty and OOD for Actor-Critic RL algorithms, namely, proximal policy optimization (PPO), and present possible applicable measures. In particular, we discuss the concepts of value and policy uncertainty. The second point is addressed by implementing different uncertainty estimation methods and comparing them across a number of environments. The OOD detection performance is evaluated via a custom evaluation benchmark of in-distribution (ID) and OOD states for various RL environments. We identify a trade-off between reward and OOD detection performance. To overcome this, we formulate a Pareto optimization problem in which we simultaneously optimize for reward and OOD detection performance. We show experimentally that the recently proposed method of Masksembles strikes a favourable balance among the survey methods, enabling high-quality uncertainty estimation and OOD detection while matching the performance of original RL agents.

Abstract (translated)

URL

https://arxiv.org/abs/2210.03649

PDF

https://arxiv.org/pdf/2210.03649.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot