Paper Reading AI Learner

Revealing Patient-Reported Experiences in Healthcare from Social Media using the DAPMAV Framework

2022-10-09 11:38:41
Curtis Murray, Lewis Mitchell, Jonathan Tuke, Mark Mackay

Abstract

Understanding patient experience in healthcare is increasingly important and desired by medical professionals in a patient-centred care approach. Healthcare discourse on social media presents an opportunity to gain a unique perspective on patient-reported experiences, complementing traditional survey data. These social media reports often appear as first-hand accounts of patients' journeys through the healthcare system, whose details extend beyond the confines of structured surveys and at a far larger scale than focus groups. However, in contrast with the vast presence of patient-experience data on social media and the potential benefits the data offers, it attracts comparatively little research attention due to the technical proficiency required for text analysis. In this paper, we introduce the Design-Acquire-Process-Model-Analyse-Visualise (DAPMAV) framework to equip non-technical domain experts with a structured approach that will enable them to capture patient-reported experiences from social media data. We apply this framework in a case study on prostate cancer data from /r/ProstateCancer, demonstrate the framework's value in capturing specific aspects of patient concern (such as sexual dysfunction), provide an overview of the discourse, and show narrative and emotional progression through these stories. We anticipate this framework to apply to a wide variety of areas in healthcare, including capturing and differentiating experiences across minority groups, geographic boundaries, and types of illnesses.

Abstract (translated)

URL

https://arxiv.org/abs/2210.04232

PDF

https://arxiv.org/pdf/2210.04232.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot