Paper Reading AI Learner

Trap and Replace: Defending Backdoor Attacks by Trapping Them into an Easy-to-Replace Subnetwork

2022-10-12 17:24:01
Haotao Wang, Junyuan Hong, Aston Zhang, Jiayu Zhou, Zhangyang Wang

Abstract

Deep neural networks (DNNs) are vulnerable to backdoor attacks. Previous works have shown it extremely challenging to unlearn the undesired backdoor behavior from the network, since the entire network can be affected by the backdoor samples. In this paper, we propose a brand-new backdoor defense strategy, which makes it much easier to remove the harmful influence of backdoor samples from the model. Our defense strategy, \emph{Trap and Replace}, consists of two stages. In the first stage, we bait and trap the backdoors in a small and easy-to-replace subnetwork. Specifically, we add an auxiliary image reconstruction head on top of the stem network shared with a light-weighted classification head. The intuition is that the auxiliary image reconstruction task encourages the stem network to keep sufficient low-level visual features that are hard to learn but semantically correct, instead of overfitting to the easy-to-learn but semantically incorrect backdoor correlations. As a result, when trained on backdoored datasets, the backdoors are easily baited towards the unprotected classification head, since it is much more vulnerable than the shared stem, leaving the stem network hardly poisoned. In the second stage, we replace the poisoned light-weighted classification head with an untainted one, by re-training it from scratch only on a small holdout dataset with clean samples, while fixing the stem network. As a result, both the stem and the classification head in the final network are hardly affected by backdoor training samples. We evaluate our method against ten different backdoor attacks. Our method outperforms previous state-of-the-art methods by up to $20.57\%$, $9.80\%$, and $13.72\%$ attack success rate and on-average $3.14\%$, $1.80\%$, and $1.21\%$ clean classification accuracy on CIFAR10, GTSRB, and ImageNet-12, respectively. Code is available online.

Abstract (translated)

URL

https://arxiv.org/abs/2210.06428

PDF

https://arxiv.org/pdf/2210.06428.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot