Paper Reading AI Learner

Probabilistic Integration of Object Level Annotations in Chest X-ray Classification

2022-10-13 12:53:42
Tom van Sonsbeek, Xiantong Zhen, Dwarikanath Mahapatra, Marcel Worring

Abstract

Medical image datasets and their annotations are not growing as fast as their equivalents in the general domain. This makes translation from the newest, more data-intensive methods that have made a large impact on the vision field increasingly more difficult and less efficient. In this paper, we propose a new probabilistic latent variable model for disease classification in chest X-ray images. Specifically we consider chest X-ray datasets that contain global disease labels, and for a smaller subset contain object level expert annotations in the form of eye gaze patterns and disease bounding boxes. We propose a two-stage optimization algorithm which is able to handle these different label granularities through a single training pipeline in a two-stage manner. In our pipeline global dataset features are learned in the lower level layers of the model. The specific details and nuances in the fine-grained expert object-level annotations are learned in the final layers of the model using a knowledge distillation method inspired by conditional variational inference. Subsequently, model weights are frozen to guide this learning process and prevent overfitting on the smaller richly annotated data subsets. The proposed method yields consistent classification improvement across different backbones on the common benchmark datasets Chest X-ray14 and MIMIC-CXR. This shows how two-stage learning of labels from coarse to fine-grained, in particular with object level annotations, is an effective method for more optimal annotation usage.

Abstract (translated)

URL

https://arxiv.org/abs/2210.06980

PDF

https://arxiv.org/pdf/2210.06980.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot