Paper Reading AI Learner

Constructing Natural Language Explanations via Saliency Map Verbalization

2022-10-13 17:48:15
Nils Feldhus, Leonhard Hennig, Maximilian Dustin Nasert, Christopher Ebert, Robert Schwarzenberg, Sebastian Möller

Abstract

Saliency maps can explain a neural model's prediction by identifying important input features. While they excel in being faithful to the explained model, saliency maps in their entirety are difficult to interpret for humans, especially for instances with many input features. In contrast, natural language explanations (NLEs) are flexible and can be tuned to a recipient's expectations, but are costly to generate: Rationalization models are usually trained on specific tasks and require high-quality and diverse datasets of human annotations. We combine the advantages from both explainability methods by verbalizing saliency maps. We formalize this underexplored task and propose a novel methodology that addresses two key challenges of this approach -- what and how to verbalize. Our approach utilizes efficient search methods that are task- and model-agnostic and do not require another black-box model, and hand-crafted templates to preserve faithfulness. We conduct a human evaluation of explanation representations across two natural language processing (NLP) tasks: news topic classification and sentiment analysis. Our results suggest that saliency map verbalization makes explanations more understandable and less cognitively challenging to humans than conventional heatmap visualization.

Abstract (translated)

URL

https://arxiv.org/abs/2210.07222

PDF

https://arxiv.org/pdf/2210.07222.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot