Paper Reading AI Learner

Can Language Representation Models Think in Bets?

2022-10-14 05:01:04
Zhisheng Tang, Mayank Kejriwal

Abstract

In recent years, transformer-based language representation models (LRMs) have achieved state-of-the-art results on difficult natural language understanding problems, such as question answering and text summarization. As these models are integrated into real-world applications, evaluating their ability to make rational decisions is an important research agenda, with practical ramifications. This article investigates LRMs' rational decision-making ability through a carefully designed set of decision-making benchmarks and experiments. Inspired by classic work in cognitive science, we model the decision-making problem as a bet. We then investigate an LRM's ability to choose outcomes that have optimal, or at minimum, positive expected gain. Through a robust body of experiments on four established LRMs, we show that a model is only able to `think in bets' if it is first fine-tuned on bet questions with an identical structure. Modifying the bet question's structure, while still retaining its fundamental characteristics, decreases an LRM's performance by more than 25\%, on average, although absolute performance remains well above random. LRMs are also found to be more rational when selecting outcomes with non-negative expected gain, rather than optimal or strictly positive expected gain. Our results suggest that LRMs could potentially be applied to tasks that rely on cognitive decision-making skills, but that more research is necessary before they can robustly make rational decisions.

Abstract (translated)

URL

https://arxiv.org/abs/2210.07519

PDF

https://arxiv.org/pdf/2210.07519.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot