Paper Reading AI Learner

HAVANA: Hard negAtiVe sAmples aware self-supervised coNtrastive leArning for Airborne laser scanning point clouds semantic segmentation

2022-10-19 15:05:17
Yunsheng Zhang, Jianguo Yao, Ruixiang Zhang, Siyang Chen, Haifeng Li

Abstract

Deep Neural Network (DNN) based point cloud semantic segmentation has presented significant achievements on large-scale labeled aerial laser point cloud datasets. However, annotating such large-scaled point clouds is time-consuming. Due to density variations and spatial heterogeneity of the Airborne Laser Scanning (ALS) point clouds, DNNs lack generalization capability and thus lead to unpromising semantic segmentation, as the DNN trained in one region underperform when directly utilized in other regions. However, Self-Supervised Learning (SSL) is a promising way to solve this problem by pre-training a DNN model utilizing unlabeled samples followed by a fine-tuned downstream task involving very limited labels. Hence, this work proposes a hard-negative sample aware self-supervised contrastive learning method to pre-train the model for semantic segmentation. The traditional contrastive learning for point clouds selects the hardest negative samples by solely relying on the distance between the embedded features derived from the learning process, potentially evolving some negative samples from the same classes to reduce the contrastive learning effectiveness. Therefore, we design an AbsPAN (Absolute Positive And Negative samples) strategy based on k-means clustering to filter the possible false-negative samples. Experiments on two typical ALS benchmark datasets demonstrate that the proposed method is more appealing than supervised training schemes without pre-training. Especially when the labels are severely inadequate (10% of the ISPRS training set), the results obtained by the proposed HAVANA method still exceed 94% of the supervised paradigm performance with full training set.

Abstract (translated)

URL

https://arxiv.org/abs/2210.10626

PDF

https://arxiv.org/pdf/2210.10626.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot