Paper Reading AI Learner

Does Decentralized Learning with Non-IID Unlabeled Data Benefit from Self Supervision?

2022-10-20 01:32:41
Lirui Wang, Kaiqing Zhang, Yunzhu Li, Yonglong Tian, Russ Tedrake

Abstract

Decentralized learning has been advocated and widely deployed to make efficient use of distributed datasets, with an extensive focus on supervised learning (SL) problems. Unfortunately, the majority of real-world data are unlabeled and can be highly heterogeneous across sources. In this work, we carefully study decentralized learning with unlabeled data through the lens of self-supervised learning (SSL), specifically contrastive visual representation learning. We study the effectiveness of a range of contrastive learning algorithms under decentralized learning settings, on relatively large-scale datasets including ImageNet-100, MS-COCO, and a new real-world robotic warehouse dataset. Our experiments show that the decentralized SSL (Dec-SSL) approach is robust to the heterogeneity of decentralized datasets, and learns useful representation for object classification, detection, and segmentation tasks. This robustness makes it possible to significantly reduce communication and reduce the participation ratio of data sources with only minimal drops in performance. Interestingly, using the same amount of data, the representation learned by Dec-SSL can not only perform on par with that learned by centralized SSL which requires communication and excessive data storage costs, but also sometimes outperform representations extracted from decentralized SL which requires extra knowledge about the data labels. Finally, we provide theoretical insights into understanding why data heterogeneity is less of a concern for Dec-SSL objectives, and introduce feature alignment and clustering techniques to develop a new Dec-SSL algorithm that further improves the performance, in the face of highly non-IID data. Our study presents positive evidence to embrace unlabeled data in decentralized learning, and we hope to provide new insights into whether and why decentralized SSL is effective.

Abstract (translated)

URL

https://arxiv.org/abs/2210.10947

PDF

https://arxiv.org/pdf/2210.10947.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot