Paper Reading AI Learner

Toward Multiple Specialty Learners for Explaining GNNs via Online Knowledge Distillation

2022-10-20 08:44:57
Tien-Cuong Bui, Van-Duc Le, Wen-syan Li, Sang Kyun Cha

Abstract

Graph Neural Networks (GNNs) have become increasingly ubiquitous in numerous applications and systems, necessitating explanations of their predictions, especially when making critical decisions. However, explaining GNNs is challenging due to the complexity of graph data and model execution. Despite additional computational costs, post-hoc explanation approaches have been widely adopted due to the generality of their architectures. Intrinsically interpretable models provide instant explanations but are usually model-specific, which can only explain particular GNNs. Therefore, we propose a novel GNN explanation framework named SCALE, which is general and fast for explaining predictions. SCALE trains multiple specialty learners to explain GNNs since constructing one powerful explainer to examine attributions of interactions in input graphs is complicated. In training, a black-box GNN model guides learners based on an online knowledge distillation paradigm. In the explanation phase, explanations of predictions are provided by multiple explainers corresponding to trained learners. Specifically, edge masking and random walk with restart procedures are executed to provide structural explanations for graph-level and node-level predictions, respectively. A feature attribution module provides overall summaries and instance-level feature contributions. We compare SCALE with state-of-the-art baselines via quantitative and qualitative experiments to prove its explanation correctness and execution performance. We also conduct a series of ablation studies to understand the strengths and weaknesses of the proposed framework.

Abstract (translated)

URL

https://arxiv.org/abs/2210.11094

PDF

https://arxiv.org/pdf/2210.11094.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot