Paper Reading AI Learner

RT-MOT: Confidence-Aware Real-Time Scheduling Framework for Multi-Object Tracking Tasks

2022-10-19 14:31:19
Donghwa Kang, Seunghoon Lee, Hoon Sung Chwa, Seung-Hwan Bae, Chang Mook Kang, Jinkyu Lee, Hyeongboo Baek

Abstract

Different from existing MOT (Multi-Object Tracking) techniques that usually aim at improving tracking accuracy and average FPS, real-time systems such as autonomous vehicles necessitate new requirements of MOT under limited computing resources: (R1) guarantee of timely execution and (R2) high tracking accuracy. In this paper, we propose RT-MOT, a novel system design for multiple MOT tasks, which addresses R1 and R2. Focusing on multiple choices of a workload pair of detection and association, which are two main components of the tracking-by-detection approach for MOT, we tailor a measure of object confidence for RT-MOT and develop how to estimate the measure for the next frame of each MOT task. By utilizing the estimation, we make it possible to predict tracking accuracy variation according to different workload pairs to be applied to the next frame of an MOT task. Next, we develop a novel confidence-aware real-time scheduling framework, which offers an offline timing guarantee for a set of MOT tasks based on non-preemptive fixed-priority scheduling with the smallest workload pair. At run-time, the framework checks the feasibility of a priority-inversion associated with a larger workload pair, which does not compromise the timing guarantee of every task, and then chooses a feasible scenario that yields the largest tracking accuracy improvement based on the proposed prediction. Our experiment results demonstrate that RT-MOT significantly improves overall tracking accuracy by up to 1.5x, compared to existing popular tracking-by-detection approaches, while guaranteeing timely execution of all MOT tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2210.11946

PDF

https://arxiv.org/pdf/2210.11946.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot