Paper Reading AI Learner

Robot Co-design: Beyond the Monotone Case

2019-02-15 16:31:45
Luca Carlone, Carlo Pinciroli

Abstract

Recent advances in 3D printing and manufacturing of miniaturized robotic hardware and computing are paving the way to build inexpensive and disposable robots. This will have a large impact on several applications including scientific discovery (e.g., hurricane monitoring), search-and-rescue (e.g., operation in confined spaces), and entertainment (e.g., nano drones). The need for inexpensive and task-specific robots clashes with the current practice, where human experts are in charge of designing hardware and software aspects of the robotic platform. This makes the robot design process expensive and time-consuming, and ultimately unsuitable for small-volumes low-cost applications. This paper considers the computational robot co-design problem, which aims to create an automatic algorithm that selects the best robotic modules (sensing, actuation, computing) in order to maximize the performance on a task, while satisfying given specifications (e.g., maximum cost of the resulting design). We propose a binary optimization formulation of the co-design problem and show that such formulation generalizes previous work based on strong modeling assumptions. We show that the proposed formulation can solve relatively large co-design problems in seconds and with minimal human intervention. We demonstrate the proposed approach in two applications: the co-design of an autonomous drone racing platform and the co-design of a multi-robot system.

Abstract (translated)

URL

https://arxiv.org/abs/1902.05880

PDF

https://arxiv.org/pdf/1902.05880.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot