Paper Reading AI Learner

VP-SLAM: A Monocular Real-time Visual SLAM with Points, Lines and Vanishing Points

2022-10-23 15:54:26
Andreas Georgis, Panagiotis Mermigkas, Petros Maragos

Abstract

Traditional monocular Visual Simultaneous Localization and Mapping (vSLAM) systems can be divided into three categories: those that use features, those that rely on the image itself, and hybrid models. In the case of feature-based methods, new research has evolved to incorporate more information from their environment using geometric primitives beyond points, such as lines and planes. This is because in many environments, which are man-made environments, characterized as Manhattan world, geometric primitives such as lines and planes occupy most of the space in the environment. The exploitation of these schemes can lead to the introduction of algorithms capable of optimizing the trajectory of a Visual SLAM system and also helping to construct an exuberant map. Thus, we present a real-time monocular Visual SLAM system that incorporates real-time methods for line and VP extraction, as well as two strategies that exploit vanishing points to estimate the robot's translation and improve its rotation.Particularly, we build on ORB-SLAM2, which is considered the current state-of-the-art solution in terms of both accuracy and efficiency, and extend its formulation to handle lines and VPs to create two strategies the first optimize the rotation and the second refine the translation part from the known rotation. First, we extract VPs using a real-time method and use them for a global rotation optimization strategy. Second, we present a translation estimation method that takes advantage of last-stage rotation optimization to model a linear system. Finally, we evaluate our system on the TUM RGB-D benchmark and demonstrate that the proposed system achieves state-of-the-art results and runs in real time, and its performance remains close to the original ORB-SLAM2 system

Abstract (translated)

URL

https://arxiv.org/abs/2210.12756

PDF

https://arxiv.org/pdf/2210.12756.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot