Paper Reading AI Learner

The Robustness Limits of SoTA Vision Models to Natural Variation

2022-10-24 21:09:53
Mark Ibrahim, Quentin Garrido, Ari Morcos, Diane Bouchacourt

Abstract

Recent state-of-the-art vision models introduced new architectures, learning paradigms, and larger pretraining data, leading to impressive performance on tasks such as classification. While previous generations of vision models were shown to lack robustness to factors such as pose, it's unclear the extent to which this next generation of models are more robust. To study this question, we develop a dataset of more than 7 million images with controlled changes in pose, position, background, lighting, and size. We study not only how robust recent state-of-the-art models are, but also the extent to which models can generalize variation in factors when they're present during training. We consider a catalog of recent vision models, including vision transformers (ViT), self-supervised models such as masked autoencoders (MAE), and models trained on larger datasets such as CLIP. We find out-of-the-box, even today's best models are not robust to common changes in pose, size, and background. When some samples varied during training, we found models required a significant portion of diversity to generalize -- though eventually robustness did improve. When diversity is only seen for some classes however, we found models did not generalize to other classes, unless the classes were very similar to those seen varying during training. We hope our work will shed further light on the blind spots of SoTA models and spur the development of more robust vision models.

Abstract (translated)

URL

https://arxiv.org/abs/2210.13604

PDF

https://arxiv.org/pdf/2210.13604.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot