Paper Reading AI Learner

Motion correction in MRI using deep learning and a novel hybrid loss function

2022-10-19 14:40:41
Lei Zhang, Xiaoke Wang, Michael Rawson, Radu Balan, Edward H. Herskovits, Elias Melhem, Linda Chang, Ze Wang, Thomas Ernst

Abstract

Purpose To develop and evaluate a deep learning-based method (MC-Net) to suppress motion artifacts in brain magnetic resonance imaging (MRI). Methods MC-Net was derived from a UNet combined with a two-stage multi-loss function. T1-weighted axial brain images contaminated with synthetic motions were used to train the network. Evaluation used simulated T1 and T2-weighted axial, coronal, and sagittal images unseen during training, as well as T1-weighted images with motion artifacts from real scans. Performance indices included the peak signal to noise ratio (PSNR), structural similarity index measure (SSIM), and visual reading scores. Two clinical readers scored the images. Results The MC-Net outperformed other methods implemented in terms of PSNR and SSIM on the T1 axial test set. The MC-Net significantly improved the quality of all T1-weighted images (for all directions and for simulated as well as real motion artifacts), both on quantitative measures and visual scores. However, the MC-Net performed poorly on images of untrained contrast (T2-weighted). Conclusion The proposed two-stage multi-loss MC-Net can effectively suppress motion artifacts in brain MRI without compromising image context. Given the efficiency of the MC-Net (single image processing time ~40ms), it can potentially be used in real clinical settings. To facilitate further research, the code and trained model are available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2210.14156

PDF

https://arxiv.org/pdf/2210.14156.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot