Paper Reading AI Learner

Similarity between Units of Natural Language: The Transition from Coarse to Fine Estimation

2022-10-25 18:54:32
Wenchuan Mu

Abstract

Capturing the similarities between human language units is crucial for explaining how humans associate different objects, and therefore its computation has received extensive attention, research, and applications. With the ever-increasing amount of information around us, calculating similarity becomes increasingly complex, especially in many cases, such as legal or medical affairs, measuring similarity requires extra care and precision, as small acts within a language unit can have significant real-world effects. My research goal in this thesis is to develop regression models that account for similarities between language units in a more refined way. Computation of similarity has come a long way, but approaches to debugging the measures are often based on continually fitting human judgment values. To this end, my goal is to develop an algorithm that precisely catches loopholes in a similarity calculation. Furthermore, most methods have vague definitions of the similarities they compute and are often difficult to interpret. The proposed framework addresses both shortcomings. It constantly improves the model through catching different loopholes. In addition, every refinement of the model provides a reasonable explanation. The regression model introduced in this thesis is called progressively refined similarity computation, which combines attack testing with adversarial training. The similarity regression model of this thesis achieves state-of-the-art performance in handling edge cases.

Abstract (translated)

URL

https://arxiv.org/abs/2210.14275

PDF

https://arxiv.org/pdf/2210.14275.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot