Paper Reading AI Learner

Piloting Copilot and Codex: Hot Temperature, Cold Prompts, or Black Magic?

2022-10-26 13:28:14
Jean-Baptiste Döderlein, Mathieu Acher, Djamel Eddine Khelladi, Benoit Combemale

Abstract

Language models are promising solutions for tackling increasing complex problems. In software engineering, they recently attracted attention in code assistants, with programs automatically written in a given programming language from a programming task description in natural language. They have the potential to save time and effort when writing code. However, these systems are currently poorly understood, preventing them from being used optimally. In this paper, we investigate the various input parameters of two language models, and conduct a study to understand if variations of these input parameters (e.g. programming task description and the surrounding context, creativity of the language model, number of generated solutions) can have a significant impact on the quality of the generated programs. We design specific operators for varying input parameters and apply them over two code assistants (Copilot and Codex) and two benchmarks representing algorithmic problems (HumanEval and LeetCode). Our results showed that varying the input parameters can significantly improve the performance of language models. However, there is a tight dependency when varying the temperature, the prompt and the number of generated solutions, making potentially hard for developers to properly control the parameters to obtain an optimal result. This work opens opportunities to propose (automated) strategies for improving performance.

Abstract (translated)

URL

https://arxiv.org/abs/2210.14699

PDF

https://arxiv.org/pdf/2210.14699.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot