Paper Reading AI Learner

Imitation Learning-based Implicit Semantic-aware Communication Networks: Multi-layer Representation and Collaborative Reasoning

2022-10-28 13:26:08
Yong Xiao, Zijian Sun, Guangming Shi, Dusit Niyato

Abstract

Semantic communication has recently attracted significant interest from both industry and academia due to its potential to transform the existing data-focused communication architecture towards a more generally intelligent and goal-oriented semantic-aware networking system. Despite its promising potential, semantic communications and semantic-aware networking are still at their infancy. Most existing works focus on transporting and delivering the explicit semantic information, e.g., labels or features of objects, that can be directly identified from the source signal. The original definition of semantics as well as recent results in cognitive neuroscience suggest that it is the implicit semantic information, in particular the hidden relations connecting different concepts and feature items that plays the fundamental role in recognizing, communicating, and delivering the real semantic meanings of messages. Motivated by this observation, we propose a novel reasoning-based implicit semantic-aware communication network architecture that allows multiple tiers of CDC and edge servers to collaborate and support efficient semantic encoding, decoding, and interpretation for end-users. We introduce a new multi-layer representation of semantic information taking into consideration both the hierarchical structure of implicit semantics as well as the personalized inference preference of individual users. We model the semantic reasoning process as a reinforcement learning process and then propose an imitation-based semantic reasoning mechanism learning (iRML) solution for the edge servers to leaning a reasoning policy that imitates the inference behavior of the source user. A federated GCN-based collaborative reasoning solution is proposed to allow multiple edge servers to jointly construct a shared semantic interpretation model based on decentralized knowledge datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2210.16118

PDF

https://arxiv.org/pdf/2210.16118.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot