Paper Reading AI Learner

Artificial intelligence in government: Concepts, standards, and a unified framework

2022-10-31 10:57:20
Vincent J. Straub, Deborah Morgan, Jonathan Bright, Helen Margetts

Abstract

Recent advances in artificial intelligence (AI) and machine learning (ML) hold the promise of improving government. Given the advanced capabilities of AI applications, it is critical that these are embedded using standard operational procedures, clear epistemic criteria, and behave in alignment with the normative expectations of society. Scholars in multiple domains have subsequently begun to conceptualize the different forms that AI systems may take, highlighting both their potential benefits and pitfalls. However, the literature remains fragmented, with researchers in social science disciplines like public administration and political science, and the fast-moving fields of AI, ML, and robotics, all developing concepts in relative isolation. Although there are calls to formalize the emerging study of AI in government, a balanced account that captures the full breadth of theoretical perspectives needed to understand the consequences of embedding AI into a public sector context is lacking. Here, we unify efforts across social and technical disciplines by using concept mapping to identify 107 different terms used in the multidisciplinary study of AI. We inductively sort these into three distinct semantic groups, which we label the (a) operational, (b) epistemic, and (c) normative domains. We then build on the results of this mapping exercise by proposing three new multifaceted concepts to study AI-based systems for government (AI-GOV) in an integrated, forward-looking way, which we call (1) operational fitness, (2) epistemic completeness, and (3) normative salience. Finally, we put these concepts to work by using them as dimensions in a conceptual typology of AI-GOV and connecting each with emerging AI technical measurement standards to encourage operationalization, foster cross-disciplinary dialogue, and stimulate debate among those aiming to reshape public administration with AI.

Abstract (translated)

URL

https://arxiv.org/abs/2210.17218

PDF

https://arxiv.org/pdf/2210.17218.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot