Paper Reading AI Learner

Emotional Brain State Classification on fMRI Data Using Deep Residual and Convolutional Networks

2022-10-31 02:08:02
Maxime Tchibozo, Donggeun Kim, Zijing Wang, Xiaofu He

Abstract

The goal of emotional brain state classification on functional MRI (fMRI) data is to recognize brain activity patterns related to specific emotion tasks performed by subjects during an experiment. Distinguishing emotional brain states from other brain states using fMRI data has proven to be challenging due to two factors: a difficulty to generate fast yet accurate predictions in short time frames, and a difficulty to extract emotion features which generalize to unseen subjects. To address these challenges, we conducted an experiment in which 22 subjects viewed pictures designed to stimulate either negative, neutral or rest emotional responses while their brain activity was measured using fMRI. We then developed two distinct Convolution-based approaches to decode emotional brain states using only spatial information from single, minimally pre-processed (slice timing and realignment) fMRI volumes. In our first approach, we trained a 1D Convolutional Network (84.9% accuracy; chance level 33%) to classify 3 emotion conditions using One-way Analysis of Variance (ANOVA) voxel selection combined with hyperalignment. In our second approach, we trained a 3D ResNet-50 model (78.0% accuracy; chance level 50%) to classify 2 emotion conditions from single 3D fMRI volumes directly. Our Convolutional and Residual classifiers successfully learned group-level emotion features and could decode emotion conditions from fMRI volumes in milliseconds. These approaches could potentially be used in brain computer interfaces and real-time fMRI neurofeedback research.

Abstract (translated)

URL

https://arxiv.org/abs/2210.17015

PDF

https://arxiv.org/pdf/2210.17015.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot