Paper Reading AI Learner

Self-supervised Character-to-Character Distillation

2022-11-01 05:48:18
Tongkun Guan, Wei Shen

Abstract

Handling complicated text images (e.g., irregular structures, low resolution, heavy occlusion, and even illumination), existing supervised text recognition methods are data-hungry. Although these methods employ large-scale synthetic text images to reduce the dependence on annotated real images, the domain gap limits the recognition performance. Therefore, exploring the robust text feature representation on unlabeled real images by self-supervised learning is a good solution. However, existing self-supervised text recognition methods only execute sequence-to-sequence representation learning by roughly splitting the visual features along the horizontal axis, which will damage the character structures. Besides, these sequential-level self-learning methods limit the availability of geometric-based data augmentation, as large-scale geometry augmentation leads to sequence-to-sequence inconsistency. To address the above-mentioned issues, we proposed a novel self-supervised character-to-character distillation method, CCD. Specifically, we delineate the character structures of unlabeled real images by designing a self-supervised character segmentation module, and further apply the segmentation results to build character-level representation learning. CCD differs from prior works in that we propose a character-level pretext task to learn more fine-grained feature representations. Besides, compared with the inflexible augmentations of sequence-to-sequence models, our work satisfies character-to-character representation consistency, across various transformations (e.g., geometry and colour), to generate robust text features in the representative space. Experiments demonstrate that CCD achieves state-of-the-art performance on publicly available text recognition benchmarks.

Abstract (translated)

URL

https://arxiv.org/abs/2211.00288

PDF

https://arxiv.org/pdf/2211.00288.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot