Paper Reading AI Learner

Oracle-guided Contrastive Clustering

2022-11-01 12:05:12
Mengdie Wang, Liyuan Shang, Suyun Zhao, Yiming Wang, Hong Chen, Cuiping Li, Xizhao Wang

Abstract

Deep clustering aims to learn a clustering representation through deep architectures. Most of the existing methods usually conduct clustering with the unique goal of maximizing clustering performance, that ignores the personalized demand of clustering tasks.% and results in unguided clustering solutions. However, in real scenarios, oracles may tend to cluster unlabeled data by exploiting distinct criteria, such as distinct semantics (background, color, object, etc.), and then put forward personalized clustering tasks. To achieve task-aware clustering results, in this study, Oracle-guided Contrastive Clustering(OCC) is then proposed to cluster by interactively making pairwise ``same-cluster" queries to oracles with distinctive demands. Specifically, inspired by active learning, some informative instance pairs are queried, and evaluated by oracles whether the pairs are in the same cluster according to their desired orientation. And then these queried same-cluster pairs extend the set of positive instance pairs for contrastive learning, guiding OCC to extract orientation-aware feature representation. Accordingly, the query results, guided by oracles with distinctive demands, may drive the OCC's clustering results in a desired orientation. Theoretically, the clustering risk in an active learning manner is given with a tighter upper bound, that guarantees active queries to oracles do mitigate the clustering risk. Experimentally, extensive results verify that OCC can cluster accurately along the specific orientation and it substantially outperforms the SOTA clustering methods as well. To the best of our knowledge, it is the first deep framework to perform personalized clustering.

Abstract (translated)

URL

https://arxiv.org/abs/2211.00409

PDF

https://arxiv.org/pdf/2211.00409.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot