Paper Reading AI Learner

A Close Look into the Calibration of Pre-trained Language Models

2022-10-31 21:31:07
Yangyi Chen, Lifan Yuan, Ganqu Cui, Zhiyuan Liu, Heng Ji

Abstract

Pre-trained language models (PLMs) achieve remarkable performance on many downstream tasks, but may fail in giving reliable estimates of their predictive uncertainty. Given the lack of a comprehensive understanding of PLMs calibration, we take a close look into this new research problem, aiming to answer two questions: (1) Do PLMs learn to become calibrated in the training process? (2) How effective are existing calibration methods? For the first question, we conduct fine-grained control experiments to study the dynamic change in PLMs' calibration performance in training. We consider six factors as control variables, including dataset difficulty, available training samples, training steps, the number of tunable parameters, model scale, and pretraining. In experiments, we observe a consistent change in calibration performance across six factors. We find that PLMs don't learn to become calibrated in training, evidenced by the continual increase in confidence, no matter the predictions are correct or not. We highlight that our finding presents some contradiction with two established conclusions: (a) Larger PLMs are more calibrated; (b) Pretraining improves model calibration. Next, we study the effectiveness of existing calibration methods in mitigating the overconfidence issue, in both in-distribution and various out-of-distribution settings. Besides unlearnable calibration methods, we adapt two recently proposed learnable methods that directly collect data to train models to have reasonable confidence estimations. Also, we propose extended learnable methods based on existing ones to further improve or maintain PLMs calibration without sacrificing the original task performance. Experimental results show that learnable methods significantly reduce PLMs' confidence in wrong predictions, and our methods exhibit superior performance compared with previous methods.

Abstract (translated)

URL

https://arxiv.org/abs/2211.00151

PDF

https://arxiv.org/pdf/2211.00151.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot