Paper Reading AI Learner

FedTP: Federated Learning by Transformer Personalization

2022-11-03 03:42:11
Hongxia Li, Zhongyi Cai, Jingya Wang, Jiangnan Tang, Weiping Ding, Chin-Teng Lin, Ye Shi

Abstract

Federated learning is an emerging learning paradigm where multiple clients collaboratively train a machine learning model in a privacy-preserving manner. Personalized federated learning extends this paradigm to overcome heterogeneity across clients by learning personalized models. Recently, there have been some initial attempts to apply Transformers to federated learning. However, the impacts of federated learning algorithms on self-attention have not yet been studied. This paper investigates this relationship and reveals that federated averaging algorithms actually have a negative impact on self-attention where there is data heterogeneity. These impacts limit the capabilities of the Transformer model in federated learning settings. Based on this, we propose FedTP, a novel Transformer-based federated learning framework that learns personalized self-attention for each client while aggregating the other parameters among the clients. Instead of using a vanilla personalization mechanism that maintains personalized self-attention layers of each client locally, we develop a learn-to-personalize mechanism to further encourage the cooperation among clients and to increase the scablability and generalization of FedTP. Specifically, the learn-to-personalize is realized by learning a hypernetwork on the server that outputs the personalized projection matrices of self-attention layers to generate client-wise queries, keys and values. Furthermore, we present the generalization bound for FedTP with the learn-to-personalize mechanism. Notably, FedTP offers a convenient environment for performing a range of image and language tasks using the same federated network architecture - all of which benefit from Transformer personalization. Extensive experiments verify that FedTP with the learn-to-personalize mechanism yields state-of-the-art performance in non-IID scenarios. Our code is available online.

Abstract (translated)

URL

https://arxiv.org/abs/2211.01572

PDF

https://arxiv.org/pdf/2211.01572.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot