Paper Reading AI Learner

Dynamic weights enabled Physics-Informed Neural Network for simulating the mobility of Engineered Nano-particles in a contaminated aquifer

2022-10-25 07:55:20
Shikhar Nilabh, Fidel Grandia

Abstract

Numerous polluted groundwater sites across the globe require an active remediation strategy to restore natural environmental conditions and local ecosystem. The Engineered Nano-particles (ENPs) have emerged as an efficient reactive agent for the in-situ degradation of groundwater contaminants. While the performance of these ENPs has been highly promising on the laboratory scale, their application in real field case conditions is still limited. The complex transport and retention mechanisms of ENPs hinder the development of an efficient remediation strategy. Therefore, a predictive tool for understanding the transport and retention behavior of ENPs is highly required. The existing tools in the literature are dominated with numerical simulators, which have limited flexibility and accuracy in the presence of sparse datasets. This work uses a dynamic, weight-enabled Physics-Informed Neural Network (dw-PINN) framework to model the nano-particle behavior within an aquifer. The result from the forward model demonstrates the effective capability of dw-PINN in accurately predicting the ENPs mobility. The model verification step shows that the relative mean square error (MSE) of the predicted ENPs concentration using dw-PINN converges to a minimum value of $1.3{e^{-5}}$. In the subsequent step, the result from the inverse model estimates the governing parameters of ENPs mobility with reasonable accuracy. The research demonstrates the tool's capability to provide predictive insights for developing an efficient groundwater remediation strategy.

Abstract (translated)

URL

https://arxiv.org/abs/2211.03525

PDF

https://arxiv.org/pdf/2211.03525.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot