Paper Reading AI Learner

Domain-incremental Cardiac Image Segmentation with Style-oriented Replay and Domain-sensitive Feature Whitening

2022-11-09 13:07:36
Kang Li, Lequan Yu, Pheng-Ann Heng

Abstract

Contemporary methods have shown promising results on cardiac image segmentation, but merely in static learning, i.e., optimizing the network once for all, ignoring potential needs for model updating. In real-world scenarios, new data continues to be gathered from multiple institutions over time and new demands keep growing to pursue more satisfying performance. The desired model should incrementally learn from each incoming dataset and progressively update with improved functionality as time goes by. As the datasets sequentially delivered from multiple sites are normally heterogenous with domain discrepancy, each updated model should not catastrophically forget previously learned domains while well generalizing to currently arrived domains or even unseen domains. In medical scenarios, this is particularly challenging as accessing or storing past data is commonly not allowed due to data privacy. To this end, we propose a novel domain-incremental learning framework to recover past domain inputs first and then regularly replay them during model optimization. Particularly, we first present a style-oriented replay module to enable structure-realistic and memory-efficient reproduction of past data, and then incorporate the replayed past data to jointly optimize the model with current data to alleviate catastrophic forgetting. During optimization, we additionally perform domain-sensitive feature whitening to suppress model's dependency on features that are sensitive to domain changes (e.g., domain-distinctive style features) to assist domain-invariant feature exploration and gradually improve the generalization performance of the network. We have extensively evaluated our approach with the M&Ms Dataset in single-domain and compound-domain incremental learning settings with improved performance over other comparison approaches.

Abstract (translated)

URL

https://arxiv.org/abs/2211.04862

PDF

https://arxiv.org/pdf/2211.04862.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot