Paper Reading AI Learner

Towards Generalization on Real Domain for Single Image Dehazing via Meta-Learning

2022-11-14 07:04:00
Wenqi Ren, Qiyu Sun, Chaoqiang Zhao, Yang Tang

Abstract

Learning-based image dehazing methods are essential to assist autonomous systems in enhancing reliability. Due to the domain gap between synthetic and real domains, the internal information learned from synthesized images is usually sub-optimal in real domains, leading to severe performance drop of dehaizing models. Driven by the ability on exploring internal information from a few unseen-domain samples, meta-learning is commonly adopted to address this issue via test-time training, which is hyperparameter-sensitive and time-consuming. In contrast, we present a domain generalization framework based on meta-learning to dig out representative and discriminative internal properties of real hazy domains without test-time training. To obtain representative domain-specific information, we attach two entities termed adaptation network and distance-aware aggregator to our dehazing network. The adaptation network assists in distilling domain-relevant information from a few hazy samples and caching it into a collection of features. The distance-aware aggregator strives to summarize the generated features and filter out misleading information for more representative internal properties. To enhance the discrimination of distilled internal information, we present a novel loss function called domain-relevant contrastive regularization, which encourages the internal features generated from the same domain more similar and that from diverse domains more distinct. The generated representative and discriminative features are regarded as some external variables of our dehazing network to regress a particular and powerful function for a given domain. The extensive experiments on real hazy datasets, such as RTTS and URHI, validate that our proposed method has superior generalization ability than the state-of-the-art competitors.

Abstract (translated)

URL

https://arxiv.org/abs/2211.07147

PDF

https://arxiv.org/pdf/2211.07147.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot