Paper Reading AI Learner

Detecting Disengagement in Virtual Learning as an Anomaly

2022-11-13 10:29:25
Ali Abedi, Shehroz S. Khan

Abstract

Student engagement is an important factor in meeting the goals of virtual learning programs. Automatic measurement of student engagement provides helpful information for instructors to meet learning program objectives and individualize program delivery. Many existing approaches solve video-based engagement measurement using the traditional frameworks of binary classification (classifying video snippets into engaged or disengaged classes), multi-class classification (classifying video snippets into multiple classes corresponding to different levels of engagement), or regression (estimating a continuous value corresponding to the level of engagement). However, we observe that while the engagement behaviour is mostly well-defined (e.g., focused, not distracted), disengagement can be expressed in various ways. In addition, in some cases, the data for disengaged classes may not be sufficient to train generalizable binary or multi-class classifiers. To handle this situation, in this paper, for the first time, we formulate detecting disengagement in virtual learning as an anomaly detection problem. We design various autoencoders, including temporal convolutional network autoencoder, long-short-term memory autoencoder, and feedforward autoencoder using different behavioral and affect features for video-based student disengagement detection. The result of our experiments on two publicly available student engagement datasets, DAiSEE and EmotiW, shows the superiority of the proposed approach for disengagement detection as an anomaly compared to binary classifiers for classifying videos into engaged versus disengaged classes (with an average improvement of 9% on the area under the curve of the receiver operating characteristic curve and 22% on the area under the curve of the precision-recall curve).

Abstract (translated)

URL

https://arxiv.org/abs/2211.06870

PDF

https://arxiv.org/pdf/2211.06870.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot