Paper Reading AI Learner

MixBin: Towards Budgeted Binarization

2022-11-12 20:30:38
Udbhav Bamba, Neeraj Anand, Dilip K. Prasad, Deepak K. Gupta

Abstract

Binarization has proven to be amongst the most effective ways of neural network compression, reducing the FLOPs of the original model by a large extent. However, such levels of compression are often accompanied by a significant drop in the performance. There exist some approaches that reduce this performance drop by facilitating partial binarization of the network, however, a systematic approach to mix binary and full-precision parameters in a single network is still missing. In this paper, we propose a paradigm to perform partial binarization of neural networks in a controlled sense, thereby constructing budgeted binary neural network (B2NN). We present MixBin, an iterative search-based strategy that constructs B2NN through optimized mixing of the binary and full-precision components. MixBin allows to explicitly choose the approximate fraction of the network to be kept as binary, thereby presenting the flexibility to adapt the inference cost at a prescribed budget. We demonstrate through experiments that B2NNs obtained from our MixBin strategy are significantly better than those obtained from random selection of the network layers. To perform partial binarization in an effective manner, it is important that both the full-precision as well as the binary components of the B2NN are appropriately optimized. We also demonstrate that the choice of the activation function can have a significant effect on this process, and to circumvent this issue, we present BinReLU, that can be used as an effective activation function for the full-precision as well as the binary components of any B2NN. Experimental investigations reveal that BinReLU outperforms the other activation functions in all possible scenarios of B2NN: zero-, partial- as well as full binarization. Finally, we demonstrate the efficacy of MixBin on the tasks of classification and object tracking using benchmark datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2211.06739

PDF

https://arxiv.org/pdf/2211.06739.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot