Paper Reading AI Learner

FullPack: Full Vector Utilization for Sub-Byte Quantized Inference on General Purpose CPUs

2022-11-13 18:13:31
Hossein Katebi, Navidreza Asadi, Maziar Goudarzi

Abstract

Although prior art has demonstrated negligible accuracy drop in sub-byte quantization -- where weights and/or activations are represented by less than 8 bits -- popular SIMD instructions of CPUs do not natively support these datatypes. While recent methods, such as ULPPACK, are already using sub-byte quantization on general-purpose CPUs with vector units, they leave out several empty bits between the sub-byte values in memory and in vector registers to avoid overflow to the neighbours during the operations. This results in memory footprint and bandwidth-usage inefficiencies and suboptimal performance. In this paper, we present memory layouts for storing, and mechanisms for processing sub-byte (4-, 2-, or 1-bit) models that utilize all the bits in the memory as well as in the vector registers for the actual data. We provide compute kernels for the proposed layout for the GEMV (GEneral Matrix-Vector multiplication) operations between weights and activations of different datatypes (e.g., 8-bit activations and 4-bit weights). For evaluation, we extended the TFLite package and added our methods to it, then ran the models on the cycle-accurate gem5 simulator to compare detailed memory and CPU cycles of each method. We compare against nine other methods that are actively used in production including GEMLOWP, Ruy, XNNPack, and ULPPACK. Furthermore, we explore the effect of different input and output sizes of deep learning layers on the performance of our proposed method. Experimental results show 0.96-2.1x speedup for small sizes and 1.2-6.7x speedup for mid to large sizes. Applying our proposal to a real-world speech recognition model, Mozilla DeepSpeech, we proved that our method achieves 1.56-2.11x end-to-end speedup compared to the state-of-the-art, depending on the bit-width employed.

Abstract (translated)

URL

https://arxiv.org/abs/2211.06982

PDF

https://arxiv.org/pdf/2211.06982.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot