Paper Reading AI Learner

Agent-State Construction with Auxiliary Inputs

2022-11-15 00:18:14
Ruo Yu Tao, Adam White, Marlos C. Machado

Abstract

In many, if not every realistic sequential decision-making task, the decision-making agent is not able to model the full complexity of the world. The environment is often much larger and more complex than the agent, a setting also known as partial observability. In such settings, the agent must leverage more than just the current sensory inputs; it must construct an agent state that summarizes previous interactions with the world. Currently, a popular approach for tackling this problem is to learn the agent-state function via a recurrent network from the agent's sensory stream as input. Many impressive reinforcement learning applications have instead relied on environment-specific functions to aid the agent's inputs for history summarization. These augmentations are done in multiple ways, from simple approaches like concatenating observations to more complex ones such as uncertainty estimates. Although ubiquitous in the field, these additional inputs, which we term auxiliary inputs, are rarely emphasized, and it is not clear what their role or impact is. In this work we explore this idea further, and relate these auxiliary inputs to prior classic approaches to state construction. We present a series of examples illustrating the different ways of using auxiliary inputs for reinforcement learning. We show that these auxiliary inputs can be used to discriminate between observations that would otherwise be aliased, leading to more expressive features that smoothly interpolate between different states. Finally, we show that this approach is complementary to state-of-the-art methods such as recurrent neural networks and truncated back-propagation through time, and acts as a heuristic that facilitates longer temporal credit assignment, leading to better performance.

Abstract (translated)

URL

https://arxiv.org/abs/2211.07805

PDF

https://arxiv.org/pdf/2211.07805.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot