Paper Reading AI Learner

Disentangling Variational Autoencoders

2022-11-14 19:22:41
Rafael Pastrana

Abstract

A variational autoencoder (VAE) is a probabilistic machine learning framework for posterior inference that projects an input set of high-dimensional data to a lower-dimensional, latent space. The latent space learned with a VAE offers exciting opportunities to develop new data-driven design processes in creative disciplines, in particular, to automate the generation of multiple novel designs that are aesthetically reminiscent of the input data but that were unseen during training. However, the learned latent space is typically disorganized and entangled: traversing the latent space along a single dimension does not result in changes to single visual attributes of the data. The lack of latent structure impedes designers from deliberately controlling the visual attributes of new designs generated from the latent space. This paper presents an experimental study that investigates latent space disentanglement. We implement three different VAE models from the literature and train them on a publicly available dataset of 60,000 images of hand-written digits. We perform a sensitivity analysis to find a small number of latent dimensions necessary to maximize a lower bound to the log marginal likelihood of the data. Furthermore, we investigate the trade-offs between the quality of the reconstruction of the decoded images and the level of disentanglement of the latent space. We are able to automatically align three latent dimensions with three interpretable visual properties of the digits: line weight, tilt and width. Our experiments suggest that i) increasing the contribution of the Kullback-Leibler divergence between the prior over the latents and the variational distribution to the evidence lower bound, and ii) conditioning input image class enhances the learning of a disentangled latent space with a VAE.

Abstract (translated)

URL

https://arxiv.org/abs/2211.07700

PDF

https://arxiv.org/pdf/2211.07700.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot