Paper Reading AI Learner

Addressing the issue of stochastic environments and local decision-making in multi-objective reinforcement learning

2022-11-16 04:56:42
Kewen Ding

Abstract

Multi-objective reinforcement learning (MORL) is a relatively new field which builds on conventional Reinforcement Learning (RL) to solve multi-objective problems. One of common algorithm is to extend scalar value Q-learning by using vector Q values in combination with a utility function, which captures the user's preference for action selection. This study follows on prior works, and focuses on what factors influence the frequency with which value-based MORL Q-learning algorithms learn the optimal policy for an environment with stochastic state transitions in scenarios where the goal is to maximise the Scalarised Expected Return (SER) - that is, to maximise the average outcome over multiple runs rather than the outcome within each individual episode. The analysis of the interaction between stochastic environment and MORL Q-learning algorithms run on a simple Multi-objective Markov decision process (MOMDP) Space Traders problem with different variant versions. The empirical evaluations show that well designed reward signal can improve the performance of the original baseline algorithm, however it is still not enough to address more general environment. A variant of MORL Q-Learning incorporating global statistics is shown to outperform the baseline method in original Space Traders problem, but remains below 100 percent effectiveness in finding the find desired SER-optimal policy at the end of training. On the other hand, Option learning is guarantied to converge to desired SER-optimal policy but it is not able to scale up to solve more complex problem in real-life. The main contribution of this thesis is to identify the extent to which the issue of noisy Q-value estimates impacts on the ability to learn optimal policies under the combination of stochastic environments, non-linear utility and a constant learning rate.

Abstract (translated)

URL

https://arxiv.org/abs/2211.08669

PDF

https://arxiv.org/pdf/2211.08669.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot