Paper Reading AI Learner

Estimating defection in subscription-type markets: empirical analysis from the scholarly publishing industry

2022-11-18 01:29:51
Michael Roberts, J. Ignacio Deza, Hisham Ihshaish, Yanhui Zhu

Abstract

We present the first empirical study on customer churn prediction in the scholarly publishing industry. The study examines our proposed method for prediction on a customer subscription data over a period of 6.5 years, which was provided by a major academic publisher. We explore the subscription-type market within the context of customer defection and modelling, and provide analysis of the business model of such markets, and how these characterise the academic publishing business. The proposed method for prediction attempts to provide inference of customer's likelihood of defection on the basis of their re-sampled use of provider resources -in this context, the volume and frequency of content downloads. We show that this approach can be both accurate as well as uniquely useful in the business-to-business context, with which the scholarly publishing business model shares similarities. The main findings of this work suggest that whilst all predictive models examined, especially ensemble methods of machine learning, achieve substantially accurate prediction of churn, nearly a year ahead, this can be furthermore achieved even when the specific behavioural attributes that can be associated to each customer probability to churn are overlooked. Allowing as such highly accurate inference of churn from minimal possible data. We show that modelling churn on the basis of re-sampling customers' use of resources over subscription time is a better (simplified) approach than when considering the high granularity that can often characterise consumption behaviour.

Abstract (translated)

URL

https://arxiv.org/abs/2211.09970

PDF

https://arxiv.org/pdf/2211.09970.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot