Paper Reading AI Learner

Sharpness-Aware Training for Accurate Inference on Noisy DNN Accelerators

2022-11-18 16:58:23
Gonçalo Mordido, Sarath Chandar, François Leduc-Primeau

Abstract

Energy-efficient deep neural network (DNN) accelerators are prone to non-idealities that degrade DNN performance at inference time. To mitigate such degradation, existing methods typically add perturbations to the DNN weights during training to simulate inference on noisy hardware. However, this often requires knowledge about the target hardware and leads to a trade-off between DNN performance and robustness, decreasing the former to increase the latter. In this work, we show that applying sharpness-aware training by optimizing for both the loss value and the loss sharpness significantly improves robustness to noisy hardware at inference time while also increasing DNN performance. We further motivate our results by showing a high correlation between loss sharpness and model robustness. We show superior performance compared to injecting noise during training and aggressive weight clipping on multiple architectures, optimizers, datasets, and training regimes without relying on any assumptions about the target hardware. This is observed on a generic noise model as well as on accurate noise simulations from real hardware.

Abstract (translated)

URL

https://arxiv.org/abs/2211.11561

PDF

https://arxiv.org/pdf/2211.11561.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot