Paper Reading AI Learner

Privacy in Practice: Private COVID-19 Detection in X-Ray Images

2022-11-21 13:22:29
Lucas Lange, Maja Schneider, Erhard Rahm

Abstract

Machine learning (ML) can help fight the COVID-19 pandemic by enabling rapid screening of large volumes of chest X-ray images. To perform such data analysis while maintaining patient privacy, we create ML models that satisfy Differential Privacy (DP). Previous works exploring private COVID-19 ML models are in part based on small or skewed datasets, are lacking in their privacy guarantees, and do not investigate practical privacy. In this work, we therefore suggest several improvements to address these open gaps. We account for inherent class imbalances in the data and evaluate the utility-privacy trade-off more extensively and over stricter privacy budgets than in previous work. Our evaluation is supported by empirically estimating practical privacy leakage through actual attacks. Based on theory, the introduced DP should help limit and mitigate information leakage threats posed by black-box Membership Inference Attacks (MIAs). Our practical privacy analysis is the first to test this hypothesis on the COVID-19 detection task. In addition, we also re-examine the evaluation on the MNIST database. Our results indicate that based on the task-dependent threat from MIAs, DP does not always improve practical privacy, which we show on the COVID-19 task. The results further suggest that with increasing DP guarantees, empirical privacy leakage reaches an early plateau and DP therefore appears to have a limited impact on MIA defense. Our findings identify possibilities for better utility-privacy trade-offs, and we thus believe that empirical attack-specific privacy estimation can play a vital role in tuning for practical privacy.

Abstract (translated)

URL

https://arxiv.org/abs/2211.11434

PDF

https://arxiv.org/pdf/2211.11434.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot