Paper Reading AI Learner

Explainability of Traditional and Deep Learning Models on Longitudinal Healthcare Records

2022-11-22 04:39:17
Lin Lee Cheong (1), Tesfagabir Meharizghi (1), Wynona Black (2), Yang Guang (1), Weilin Meng (2) ((1) Amazon ML Solutions Lab, (2) Merck & Co., Inc)

Abstract

Recent advances in deep learning have led to interest in training deep learning models on longitudinal healthcare records to predict a range of medical events, with models demonstrating high predictive performance. Predictive performance is necessary but insufficient, however, with explanations and reasoning from models required to convince clinicians for sustained use. Rigorous evaluation of explainability is often missing, as comparisons between models (traditional versus deep) and various explainability methods have not been well-studied. Furthermore, ground truths needed to evaluate explainability can be highly subjective depending on the clinician's perspective. Our work is one of the first to evaluate explainability performance between and within traditional (XGBoost) and deep learning (LSTM with Attention) models on both a global and individual per-prediction level on longitudinal healthcare data. We compared explainability using three popular methods: 1) SHapley Additive exPlanations (SHAP), 2) Layer-Wise Relevance Propagation (LRP), and 3) Attention. These implementations were applied on synthetically generated datasets with designed ground-truths and a real-world medicare claims dataset. We showed that overall, LSTMs with SHAP or LRP provides superior explainability compared to XGBoost on both the global and local level, while LSTM with dot-product attention failed to produce reasonable ones. With the explosion of the volume of healthcare data and deep learning progress, the need to evaluate explainability will be pivotal towards successful adoption of deep learning models in healthcare settings.

Abstract (translated)

URL

https://arxiv.org/abs/2211.12002

PDF

https://arxiv.org/pdf/2211.12002.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot