Paper Reading AI Learner

Aligning Source Visual and Target Language Domains for Unpaired Video Captioning

2022-11-22 10:26:26
Fenglin Liu, Xian Wu, Chenyu You, Shen Ge, Yuexian Zou, Xu Sun

Abstract

Training supervised video captioning model requires coupled video-caption pairs. However, for many targeted languages, sufficient paired data are not available. To this end, we introduce the unpaired video captioning task aiming to train models without coupled video-caption pairs in target language. To solve the task, a natural choice is to employ a two-step pipeline system: first utilizing video-to-pivot captioning model to generate captions in pivot language and then utilizing pivot-to-target translation model to translate the pivot captions to the target language. However, in such a pipeline system, 1) visual information cannot reach the translation model, generating visual irrelevant target captions; 2) the errors in the generated pivot captions will be propagated to the translation model, resulting in disfluent target captions. To address these problems, we propose the Unpaired Video Captioning with Visual Injection system (UVC-VI). UVC-VI first introduces the Visual Injection Module (VIM), which aligns source visual and target language domains to inject the source visual information into the target language domain. Meanwhile, VIM directly connects the encoder of the video-to-pivot model and the decoder of the pivot-to-target model, allowing end-to-end inference by completely skipping the generation of pivot captions. To enhance the cross-modality injection of the VIM, UVC-VI further introduces a pluggable video encoder, i.e., Multimodal Collaborative Encoder (MCE). The experiments show that UVC-VI outperforms pipeline systems and exceeds several supervised systems. Furthermore, equipping existing supervised systems with our MCE can achieve 4% and 7% relative margins on the CIDEr scores to current state-of-the-art models on the benchmark MSVD and MSR-VTT datasets, respectively.

Abstract (translated)

URL

https://arxiv.org/abs/2211.12148

PDF

https://arxiv.org/pdf/2211.12148.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot