Paper Reading AI Learner

EEG aided boosting of single-lead ECG based sleep staging with Deep Knowledge Distillation

2022-11-18 21:09:25
Vaibhav Joshi, Sricharan V, Preejith SP, Mohanasankar Sivaprakasam

Abstract

An electroencephalogram (EEG) signal is currently accepted as a standard for automatic sleep staging. Lately, Near-human accuracy in automated sleep staging has been achievable by Deep Learning (DL) based approaches, enabling multi-fold progress in this area. However, An extensive and expensive clinical setup is required for EEG based sleep staging. Additionally, the EEG setup being obtrusive in nature and requiring an expert for setup adds to the inconvenience of the subject under study, making it adverse in the point of care setting. An unobtrusive and more suitable alternative to EEG is Electrocardiogram (ECG). Unsurprisingly, compared to EEG in sleep staging, its performance remains sub-par. In order to take advantage of both the modalities, transferring knowledge from EEG to ECG is a reasonable approach, ultimately boosting the performance of ECG based sleep staging. Knowledge Distillation (KD) is a promising notion in DL that shares knowledge from a superior performing but usually more complex teacher model to an inferior but compact student model. Building upon this concept, a cross-modality KD framework assisting features learned through models trained on EEG to improve ECG-based sleep staging performance is proposed. Additionally, to better understand the distillation approach, extensive experimentation on the independent modules of the proposed model was conducted. Montreal Archive of Sleep Studies (MASS) dataset consisting of 200 subjects was utilized for this study. The results from the proposed model for weighted-F1-score in 3-class and 4-class sleep staging showed a 13.40 \% and 14.30 \% improvement, respectively. This study demonstrates the feasibility of KD for single-channel ECG based sleep staging's performance enhancement in 3-class (W-R-N) and 4-class (W-R-L-D) classification.

Abstract (translated)

URL

https://arxiv.org/abs/2211.13125

PDF

https://arxiv.org/pdf/2211.13125.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot