Paper Reading AI Learner

Latent Video Diffusion Models for High-Fidelity Video Generation with Arbitrary Lengths

2022-11-23 18:58:39
Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, Qifeng Chen


AI-generated content has attracted lots of attention recently, but photo-realistic video synthesis is still challenging. Although many attempts using GANs and autoregressive models have been made in this area, the visual quality and length of generated videos are far from satisfactory. Diffusion models (DMs) are another class of deep generative models and have recently achieved remarkable performance on various image synthesis tasks. However, training image diffusion models usually requires substantial computational resources to achieve a high performance, which makes expanding diffusion models to high-dimensional video synthesis tasks more computationally expensive. To ease this problem while leveraging its advantages, we introduce lightweight video diffusion models that synthesize high-fidelity and arbitrary-long videos from pure noise. Specifically, we propose to perform diffusion and denoising in a low-dimensional 3D latent space, which significantly outperforms previous methods on 3D pixel space when under a limited computational budget. In addition, though trained on tens of frames, our models can generate videos with arbitrary lengths, i.e., thousands of frames, in an autoregressive way. Finally, conditional latent perturbation is further introduced to reduce performance degradation during synthesizing long-duration videos. Extensive experiments on various datasets and generated lengths suggest that our framework is able to sample much more realistic and longer videos than previous approaches, including GAN-based, autoregressive-based, and diffusion-based methods.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot