Paper Reading AI Learner

Step Counting with Attention-based LSTM

2022-11-18 03:33:57
Shehroz S. Khan, Ali Abedi

Abstract

Physical activity is recognized as an essential component of overall health. One measure of physical activity, the step count, is well known as a predictor of long-term morbidity and mortality. Step Counting (SC) is the automated counting of the number of steps an individual takes over a specified period of time and space. Due to the ubiquity of smartphones and smartwatches, most current SC approaches rely on the built-in accelerometer sensors on these devices. The sensor signals are analyzed as multivariate time series, and the number of steps is calculated through a variety of approaches, such as time-domain, frequency-domain, machine-learning, and deep-learning approaches. Most of the existing approaches rely on dividing the input signal into windows, detecting steps in each window, and summing the detected steps. However, these approaches require the determination of multiple parameters, including the window size. Furthermore, most of the existing deep-learning SC approaches require ground-truth labels for every single step, which can be arduous and time-consuming to annotate. To circumvent these requirements, we present a novel SC approach utilizing many-to-one attention-based LSTM. With the proposed LSTM network, SC is solved as a regression problem, taking the entire sensor signal as input and the step count as the output. The analysis shows that the attention-based LSTM automatically learned the pattern of steps even in the absence of ground-truth labels. The experimental results on three publicly available SC datasets demonstrate that the proposed method successfully counts the number of steps with low values of mean absolute error and high values of SC accuracy.

Abstract (translated)

URL

https://arxiv.org/abs/2211.13114

PDF

https://arxiv.org/pdf/2211.13114.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot