Paper Reading AI Learner

Mask the Correct Tokens: An Embarrassingly Simple Approach for Error Correction

2022-11-23 19:05:48
Kai Shen, Yichong Leng, Xu Tan, Siliang Tang, Yuan Zhang, Wenjie Liu, Edward Lin

Abstract

Text error correction aims to correct the errors in text sequences such as those typed by humans or generated by speech recognition models. Previous error correction methods usually take the source (incorrect) sentence as encoder input and generate the target (correct) sentence through the decoder. Since the error rate of the incorrect sentence is usually low (e.g., 10\%), the correction model can only learn to correct on limited error tokens but trivially copy on most tokens (correct tokens), which harms the effective training of error correction. In this paper, we argue that the correct tokens should be better utilized to facilitate effective training and then propose a simple yet effective masking strategy to achieve this goal. Specifically, we randomly mask out a part of the correct tokens in the source sentence and let the model learn to not only correct the original error tokens but also predict the masked tokens based on their context information. Our method enjoys several advantages: 1) it alleviates trivial copy; 2) it leverages effective training signals from correct tokens; 3) it is a plug-and-play module and can be applied to different models and tasks. Experiments on spelling error correction and speech recognition error correction on Mandarin datasets and grammar error correction on English datasets with both autoregressive and non-autoregressive generation models show that our method improves the correction accuracy consistently.

Abstract (translated)

URL

https://arxiv.org/abs/2211.13252

PDF

https://arxiv.org/pdf/2211.13252.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot