Paper Reading AI Learner

Spatial-Temporal Attention Network for Open-Set Fine-Grained Image Recognition

2022-11-25 07:46:42
Jiayin Sun, Hong Wang, Qiulei Dong

Abstract

Triggered by the success of transformers in various visual tasks, the spatial self-attention mechanism has recently attracted more and more attention in the computer vision community. However, we empirically found that a typical vision transformer with the spatial self-attention mechanism could not learn accurate attention maps for distinguishing different categories of fine-grained images. To address this problem, motivated by the temporal attention mechanism in brains, we propose a spatial-temporal attention network for learning fine-grained feature representations, called STAN, where the features learnt by implementing a sequence of spatial self-attention operations corresponding to multiple moments are aggregated progressively. The proposed STAN consists of four modules: a self-attention backbone module for learning a sequence of features with self-attention operations, a spatial feature self-organizing module for facilitating the model training, a spatial-temporal feature learning module for aggregating the re-organized features via a Long Short-Term Memory network, and a context-aware module that is implemented as the forget block of the spatial-temporal feature learning module for preserving/forgetting the long-term memory by utilizing contextual information. Then, we propose a STAN-based method for open-set fine-grained recognition by integrating the proposed STAN network with a linear classifier, called STAN-OSFGR. Extensive experimental results on 3 fine-grained datasets and 2 coarse-grained datasets demonstrate that the proposed STAN-OSFGR outperforms 9 state-of-the-art open-set recognition methods significantly in most cases.

Abstract (translated)

URL

https://arxiv.org/abs/2211.13940

PDF

https://arxiv.org/pdf/2211.13940.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot